More Results on Laplacian Matrix of Power 3 Mean Graphs

Sarasree. $\mathbf{S}^{\mathbf{1}}$, Dr. S.S. Sandhya ${ }^{2}$
Author1: Research Scholar, Reg. No.:20112093182002
Sree Ayyappa College for Women, Chunkankadai.
Author 2 : Assistant Professor, Department of Mathematics,
Sree Ayyappa College for Women, Chunkankadai.
[Affiliated to Manonmaniam Sundararanar University,
Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]

Abstract

: In this paper, We investigate the Laplacian matrix for some standard graphs such as Triangular Balloon graph, $P_{n} \odot K_{1,3}, P_{n} \odot K_{3}$,

AMS Subject Classification: 05C78

Keywords: Power 3 Mean Graph, Triangular Balloon graph, $P_{n} \odot K_{1,3}, P_{n} \odot K_{3}$,

1. Introduction :

In the mathematical field of graph theory, the Laplacian matrix is also called the graph Laplacian. The Laplacian matrix can be used to find many useful properties of a graph. For all detailed survey of graph Labelling we refer J.A. Gallian [2] and Harary [1]. The concept of Harmonic Mean labelling was introduced by S. Somasundram and S.S. Sandhya and further S.S. Sandhya and S. Sreeji introduced Power 3 mean labelling of graphs. Motivated by the work done by several authors we introduce a new concept called Laplacian Matrix of Power 3 Mean Graphs.

Definition 1.1

Let G be a power-3 mean graph. The Laplacian matrix L_{G} is given by $L(G)=D(G)-A(G)$. Where $D(G)$ is the Diagonal matrix of the vertex degrees and $A(G)$ is the Adjacency matrix.

Remark 1.2

In this Laplacian matrix of Power 3 mean graphs there is no column and row with all elements are zero.

Remark 1.3

Laplacian matrix of power 3 mean graphs has no isolated vertex.

2. Main Results

Theorem 2.1

Laplacian matrix of $G=T_{m} B_{n}$ is $L\left(T_{m} B_{m}\right)=D\left(T_{m} B_{n}\right)-A\left(T_{m} B_{n}\right)$

Proof

Let $G=T_{m} B_{n}$ be a Power 3 Mean graph

Now we consider for $G=T_{m} B_{n}$ with 11 vertices.

$\begin{aligned} \mathrm{D}\left(\mathrm{T}_{11} \mathrm{~B}_{11}\right) & =\left[\begin{array}{lllllllllll}2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}\right] \\ \mathrm{A}\left(\mathrm{T}_{11} \mathrm{~B}_{11}\right) & =\left[\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]\end{aligned}$

Laplacian matrix

$$
\mathrm{L}\left(\mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}}\right)=\mathrm{D}\left(\mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}}\right)-\mathrm{A}\left(\mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}}\right)
$$

$$
\mathrm{L}\left(\mathrm{~T}_{11} \mathrm{~B}_{11}\right)=\mathrm{D}\left(\mathrm{~T}_{11} \mathrm{~B}_{11}\right)-\mathrm{A}\left(\mathrm{~T}_{11} \mathrm{~B}_{11}\right)
$$

$$
=\left[\begin{array}{ccccccccccc}
2 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 4 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2
\end{array}\right]
$$

Now we can Prove n Vertices
$\mathrm{L}\left(\mathrm{T}_{11} \mathrm{~B}_{11}\right)=\left[\begin{array}{ccccccccccc}2 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 4 & -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2\end{array}\right]$

Theorem 2.2

Laplacian matrix of $\mathrm{G}=P_{n} \odot K_{1,3}$ is $\mathrm{L}\left(P_{n} \odot K_{1,3}\right)=\mathrm{D}\left(P_{n} \odot K_{1,3}\right)-\mathrm{A}\left(P_{n} \odot K_{1,3}\right)$

Proof

Let $\mathrm{G}=P_{n} \odot K_{1,3}$ be a Power 3 Mean graph.

Now we consider for $\mathrm{G}=P_{n} \odot K_{1,3}$ with 12 vertices.
n_{n}

$$
\mathrm{D}\left(P_{3} \odot K_{1,3}\right)=\left[\begin{array}{llllllllllll}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Laplacian Matrix

$$
\mathrm{L}\left(P_{3} \odot K_{1,3}\right)=\mathrm{D}\left(P_{3} \odot K_{1,3}\right)-\mathrm{A}\left(P_{3} \odot K_{1,3}\right)
$$

$=\left[\begin{array}{ccccccccccc}4 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 5 & -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1\end{array}\right]$
Similarly we can prove n vertices
$L\left(P_{n} \odot K_{1,3}\right)=$
$\left[\begin{array}{ccccccccccc}4 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 5 & -1 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1\end{array}\right]$

Theorem 2.3

Laplacian matrix of $\mathrm{G}=P_{n} \odot K_{3}$ is $\mathrm{L}\left(P_{n} \odot K_{3}\right)=\mathrm{D}\left(P_{n} \odot K_{3}\right)-\mathrm{A}\left(P_{n} \odot K_{3}\right)$

Proof

Let $\mathrm{G}=P_{n} \odot K_{3}$ be a Power 3 Mean graph

Now we consider for $G=$ with 9 vertices

$$
\begin{aligned}
\mathrm{D}\left(P_{3} \odot K_{3}\right)= & {\left[\begin{array}{lllllllll}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] } \\
& =\left[\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Laplacian matrix of G

$$
\mathrm{L}\left(P_{n} \odot K_{3}\right)=\mathrm{D}\left(P_{n} \odot K_{3}\right)-\mathrm{A}\left(P_{n} \odot K_{3}\right)
$$

$$
=\left[\begin{array}{ccccccccc}
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2
\end{array}\right]
$$

Similarly in general we can prove for n vertices

$$
\mathrm{L}\left(P_{n} \odot K_{3}\right) \quad=\left[\begin{array}{ccccccccc}
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 2 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & -1 & 0 & 0 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2
\end{array}\right]
$$

3. Conclusion

The study of Laplacian matrix can be used in many machine learning applications. It is very interesting to derive Laplacian matrix representation of power-3 mean graphs. In this paper we investigated the Laplacian matrix for Triangular Balloon graph $P_{n} \odot K_{1,3}, P_{n} \odot K_{3}$, which are power-3 mean graphs.

Acknowledgement

The authors are thankful to reference for their valuable comments and suggestions.

References

[1]. F. Harary, Graph Theory, Narosa publishing House, New Delhi, 1988.
[2]. J.A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Computations.
[3] Sarasree.S and S.S.Sandhya "Power 3 Mean Labeling of Cycle Related Graphs",
International Journal of analytical and experimental model Analysis, Vol. XIII,Issue
:IIFebruary -2021ISSN NO:0886-9367.
[4] Sarasree.S and S.S.Sandhya Wiener Index of Power 3 Mean Graphs, communicated to Journal of Physics .
[5] Sarasree.S and S.S.Sandhya Laplacian Matrix of Power 3 mean Graphs Communicated to Materials Today Proceedings, Elsevier

